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1. INTRODUCTION

Task automation systems promise to increase human productivity by assisting us with
our mundane and difficult tasks or autonomously completing them on our behalf (e.g.,
[Anupam et al. 2000; Dragunov et al. 2005; Lau et al. 2004, 2010; Leshed et al. 2008;
Spaulding et al. 2009; Sun et al. 2006]). Yet, aside from in some targeted domains
and specific types of tasks (e.g., email filters, spreadsheet macros, scripts for online
multiplayer games), few people take advantage of task automation in their everyday
lives.
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A well-known barrier to widespread adoption of task automation systems is the need
to create the task models that make automation possible [Allen et al. 2007; Gil et al.
2011; Leshed et al. 2008; Oliver et al. 2006; Shen et al. 2009; Spaulding et al. 2009]. A
task model is some executable representation of “how-to” knowledge or the procedural
steps necessary to accomplish a well-defined goal (e.g., a rule specifying that mes-
sages from Bob should go into a “Work” folder, a macro computing the running total
of purchased items, a script outlining how to cast multiple spells on a hostile war-
lock). Recognizing this barrier has led to an emergence of authoring systems that ease
some of the burden of task model creation (e.g., [Allen et al. 2007; Bergman et al. 2005;
Garland et al. 2001; Gil et al. 2011; Lau et al. 2004; Leshed et al. 2008; Shen et al. 2006;
Spaulding et al. 2009; Sun et al. 2006]). Yet, task automation remains uncommon.

We argue that a more fundamental problem lies in a basic assumption made by
current task automation systems: that people can and will recognize repetitive tasks
worthy of automating. Our interviews with users of a demonstration-based Web task
automation system revealed that most people only thought to automate tasks if they
noticed themselves performing it numerous times in a row manually. Others only
automated complex but infrequently performed tasks, believing that straightforward
everyday tasks do not warrant automation, even if they are repetitive. This latter
finding could be partially attributable to usability issues and the difficulty of creating
task models. However, most of our interviewees also stated that they do not even
believe they do repetitive tasks. Not surprisingly, then, automation systems that
rely on human-driven task model creation risk being underused because people have
difficulty identifying tasks they can or should automate.

We propose that any repetitious behavior should be a candidate for automation be-
cause automating things we have done before frees up time for us to do new things. We
analyzed real Web usage logs from seven people amounting to over 19 months worth
of data, including over 62,000 actions, and found that people do in fact repeat behav-
iors on the Web (i.e., sequences of actions within Web pages or sites). Moreover, fully
automating these behaviors, regardless of their simplicity or complexity, would result
in overall action savings of 14.3% per person on average (4.7% SD) and close to 20%
for some people.

Drawing on the premise that people find it difficult to identify automatable Web-
based tasks and our initial evidence that automating repetitive Web action sequences
can reduce the amount of work we must perform to complete those tasks (e.g., an auto-
mated script may be run instead of manually executing a repetitive task), we explored
a machine learning-based approach to Web task model construction. Our LiveAction
approach automatically detects repetition in Web usage logs (obtained from CoScripter
Reusable History, previously ActionShot [Li et al. 2010], recordings), generalizes from
the detected patterns, and constructs executable task models from those patterns
as finite-state-automata. Our machine learning-driven approach to task model gen-
eration is intended to (1) help people identify automatable tasks by automatically
detecting repetitious behavior and (2) facilitate task automation by modeling that
repetitious behavior. Our evaluations show that LiveAction task models can automate
repetitious next-steps with an overall accuracy of 78.5% (84.2% if people are allowed to
guide the automation at each step by selecting from potential alternatives presented
by LiveAction). Therefore, our LiveAction models could potentially populate the task
model repositories required by many automation systems (e.g., CoScripter [Leshed
et al. 2008]) and help us take advantage of task automation in our everyday lives.

Specifically, our contributions are:

— A semiformal interview study with users of a Web task automation system [Leshed
et al. 2008] investigating when people are prompted to create task models with
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the purpose of automating their Web-based tasks and identifying issues prevent-
ing them from doing so. Our interviews reveal that people find it difficult to identify
tasks to automate and many do not believe they perform repetitive tasks for which
automation would help.

— An analysis of real, element-level Web usage logs (e.g., logs of button and link clicks
or entering text) to test our hypothesis that the benefit of task automation lies in
automating repetitive behaviors, regardless of complexity. Our findings show that
people do in fact repeat their Web behaviors and that fully automating these would
result in action savings of 14.3% on average and up to almost 20% for some people.
Our results complement research in Web usage mining typically performed at the
page level, as permitted by server logs.

— The presentation and evaluation of LiveAction, a fully-automated, machine
learning-based approach to task model generation based on repetition detected in
Web usage logs. Our evaluations indicate that LiveAction models can automate rep-
etitious next-steps with an accuracy of 78.5% (84.2% with human feedback).

2. RELATED WORK

Our research contributes knowledge about how people behave on the Web. Specifically,
our analysis of repetition in Web behavior contributes to research in Web usage mining.
The goal of Web usage mining is to detect and analyze patterns of user behavior on the
Web [Kosala and Blockeel 2000]. Mining is typically performed offline on Web server
logs, permitting pattern discovery at the page-level. Page-level analysis has estab-
lished that navigational patterns on the Web are dominated by revisitation of previous
Web pages [Adar et al. 2009; Cockburn and McKenzie 2000]. Our repetition analysis
complements this body of work by revealing that people also demonstrate repetitive
behavior within Web pages. This analysis is made possible by our element-level min-
ing of CoScripter Reusable History logs [Li et al. 2010] which records Web page actions
(e.g., button and link clicks, entering text). Understanding that not only do people often
revisit Web pages, they also routinely perform the same sequences of actions within
those Web pages, we can further improve our user experience on the Web.

Web usage mining has also been used to personalize ads and e-commerce recommen-
dations [Kohavi et al. 2004], direct our navigation [Jin et al. 2005; Pitkow and Pirolli
1999], prefetch and cache pages we are likely to visit [Mabroukeh and Ezeife 2009],
and identify user interests to improve Web site structure and functionality [Heer and
Chi 2002]. While these and most previous work in Web usage mining have focused on
page-level support [Pierrakos et al. 2003], our approach operates at the element-level
for the purpose of Web task automation, a service unachievable through page-level
modeling. For example, page level modeling (where states are Web pages) cannot cap-
ture interactions of Web page elements inside a single Web page (e.g., filling a Web
form). Detecting and modeling user behaviors at the element-level also introduces sev-
eral new challenges. For example, to provide individualized automation, we consider
Web usage data from a single user rather than multiple users, limiting the amount
of data from which we can discover patterns. As another example, our element-level
data is inherently noisier than page-level server side logs because it inherits all of
the noise present at the server level (e.g., erroneously navigating to a page and then
back tracking) while containing additional element-level noise (e.g., clicking on page
elements extraneous to the intended task). In addition, server-side logs mainly consist
of path-structured URLs facilitating pattern detection on similar pages (i.e., detecting
similar URLs), whereas our element-level data contains unstructured text (e.g., ‘click
the “add to cart” link’, ‘enter “your name” in the “username” textbox’) and therefore
requires additional processing before pattern detection is possible. We address these
and other challenges in our algorithmic solution to element-level modeling.
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Prior research on task model creation has advocated demonstration-based author-
ing. CoScripter [Leshed et al. 2008] is an automation system that enables people to
record Web-based tasks and then replay them to automate those tasks in the future.
Others have proposed authoring via natural language instruction [Gil et al. 2011] or
a combination of natural language and programming by demonstration [Allen et al.
2007]. All of these require forethought in deciding which tasks to automate, whereas
the CoScripter Reusable History (previously ActionShot) [Li et al. 2010] and Smart
Bookmarks [Hupp and Miller 2007] systems enable retroactive authoring by recording
user actions and then allowing them to manually search for, extract, edit and rerun
previous actions. As with LiveAction, all of these systems relieve a person from deal-
ing with the underlying task model representation. However, they also require human
initiative and guidance in contrast to automatically learning models from previous
actions. In addition, because these approaches infer task models from a single demon-
stration (and possibly some additional interaction to resolve errors and ambiguity),
the models learned tend to be specific rather than generalized.

Other researchers have proposed learning more generalized task-models from mul-
tiple demonstrations of a task. For example, Sheepdog [Law et al. 2004] learns a task
model from several expert demonstrations of a task. These models can then be used
to automate technical support solutions. Similarly, the Collagen [Garland et al. 2001],
ITL [Spaulding et al. 2009], and DocWizards [Bergman et al. 2005] systems use ma-
chine learning to construct task models from user demonstrations and subsequent
annotations or edits. Again, with these approaches a person is charged with the task
of demonstrating a procedure for the purpose of teaching a system to learn a model.
LiveAction differs by acknowledging that a person’s primary objective is to accomplish
the intended tasks, not to train models. As such, LiveAction learns models from pre-
viously observed actions as a person naturally performs their tasks. Furthermore, our
approach assumes noisy data inherent in raw user actions rather than clean expert
demonstrations.

Research on automatically learning task models from natural user actions has typ-
ically employed supervised techniques in which a person provides manually labeled
task examples. For example, TaskPredictor [Shen et al. 2006] uses manually labeled
task examples to learn a classifier-based model for predicting those tasks in the future.
Here the model represents task resources (e.g., documents and applications) rather
than the procedural steps of the task. As with our approach, the Guide-O system
[Sun et al. 2006] learns a procedural, finite-state-automata-based task model from
sequences of real Web transactions. The task models are then used to guide visually
impaired users in completing online tasks. However, again the sequences must be man-
ually identified and hand labeled before Guide-O can construct and use task models.

Closely related to our work is that involving unsupervised machine learning for gen-
erating task models from natural data. These approaches remove the burden of task
model generation from already overloaded end-users. The SWISH system [Oliver et al.
2006] uses unsupervised clustering techniques to automatically model and detect tasks
from raw user interaction data on the desktop. Like with the TaskPredictor system
[Shen et al. 2006] however, task models in SWISH represent sets of related resources
rather than procedural steps.

Work that shares our motivation of automatically detecting and automating repet-
itive tasks is Cypher’s seminal programming by demonstration work on the Eager
system [Cypher 1991]. Eager detects looping behavior on HyperCard by searching
through a person’s interaction history for events similar to the current action.
LiveAction extends this idea by automatically detecting and modeling more complex
behaviors (e.g., branching) and is more tolerant to noisy data. Most similar to our
work is that of Mahmud et al. [2009] and Shen et al. [2009]. In a follow up to their
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Guide-O work [Sun et al. 2006], Mahmud et al. [2009] generate finite-state-automaton
models from unlabelled or partially labeled click-streams. LiveAction differs from this
in that it learns executable task models (where each state is a Web action such as
clicking a button or entering text in a textbox) rather than conceptual models (where
each state represent semantic concept such as “search result” or “item taxonomy”) for
guiding visually impaired users through their tasks.

Furthermore, our approach assumes unlabelled, unsegmented action sequences
and learns multiple task-specific models rather than one model characterizing all
transactions. Shen et al. [2009] automatically generate desktop workflows from inter-
action histories. A workflow is a model of the resources (e.g., emails and documents)
and actions taken on those resources (e.g., attaching files to emails, copying and
pasting documents) during the completion of a business related process. As with our
approach, workflow models here are automatically generated based on repetition
frequency. These workflow models can be used for tracking task state. However, in
contrast to our LiveAction models, they typically do not contain the detailed actions
necessary to fully automate those tasks. In other words, the workflow model actions
are represented at a higher level (e.g., attaching a file or sending an email). However,
in our representation, actions are represented as element level Web actions (e.g.,
clicking a button or selecting an element from a combo box).

Our work is also related to task model representation in human computer in-
teraction (HCI), such as GOMS (Goals, Operator, Methods, Selection rules) [Card
et al. 1983; Foley et al. 1991], CTT (ConcurTaskTrees) [Paterno et al. 1997] and HTA
(Hierarchical Task Analysis) [Annett and Duncan 1967]. In a GOMS model [Stuart
et al. 1983], goals are what users want to accomplish, operators are actions to reach the
goal, methods are sequences of operators to reach the goal and selection rules are used
to select a certain method from a set of methods. A method to generate a GOMS model
from user interaction is also described in Hudson et al. [1999]. Our automata-based
task model is conceptually similarity to the GOMS representation as a task model
specifies a task to be accomplished (a goal), contains a sequence of executable actions
(operators) and often contains branching to select an action from multiple possible
actions (similar to selection rules). HTA [Annett and Duncan 1967] describes tasks
in terms of hierarchy of operations which people use to reach a goal. Currently, our
task model does not explicitly contain such a hierarchy of operations, or tasks defined
in terms of multiple subtasks organized in a hierarchy. ConcurTaskTrees (CTT) is
another notation used for task model specification and has been used for model-based
user interface design [Paterno et al. 1997]. It also uses hierarchical structure of tasks
which is different from our current representation using a finite state automaton. An
algorithm to generate task models represented in CTT notation from input Web pages
is described in [Paganelli and Paterno 2003]. This algorithm does both page level anal-
ysis and element level analysis to create task models in CTT notation for a Web page
and an entire Web site. Task models created using this approach can represent an en-
tire set of activities in a Web site and is useful for usability evaluation, model analysis,
and user interface design. In contrast to this design-centric approach, we propose the
creation of task models from user-generated logs, which can capture specific user ac-
tivities including repetitious activities. This is useful for personalization in a Web site.
Furthermore, the CTT approach requires the availability of server-side Web site codes
in order to correctly represent a task model. Our approach to creating task models
requires client-side Web access logs, which are easier to obtain then server side codes.

3. FORMATIVE TASK MODEL CREATION INTERVIEW STUDY

To better understand when people are prompted to create task models with the
intention of automating their tasks and to identify what prevents them from doing so,
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we conducted semiformal interviews with eight users (three female) of the CoScripter
Web task automation system [Leshed et al. 2008] who were all members of our
research lab. CoScripter task models are linear, pseudo-natural language scripts
that can be executed to automate Web-based processes. To create a CoScripter task
model, a person demonstrates a task while CoScripter records their browser actions.
CoScripter presents its recorded model as a sequence of human-understandable and
directly editable actions (e.g., ‘enter “your name” in the “username” textbox’, ‘click the
“search” button’). To automate that task in the future, a person simply steps through
the actions or plays them back within the CoScripter environment. People can also
share and reuse models via the online CoScripter repository.

We asked each of our interview participants to identify two to three CoScripter mod-
els that they had previously authored and recall their creation (e.g., “Explain why you
decided to create this model,” “When did you decide to create this model?”). We then
asked general questions about the types of tasks they tended to create or not create
models for and why (e.g., “Do you always create models for tasks you know can be
automated? Why or why not?”).

3.1. Results
Our participants cited two main instigators of task model creation in CoScripter:

— Realizing a task is repetitive after several manual executions. Seven out of eight
of our participants said they created some of their task models only after noticing
themselves manually repeating a task. These participants recalled repeating their
task many times in a row or over a short period of time (even up to eight times in a
row) before realizing it and then deciding to create a task model for it. Some of these
task models were used for transient tasks (e.g., “repeatedly searching for a specific
piece of furniture on Craigslist”) while others were used for regularly occurring tasks
(e.g., “logging into weekly e-meetings”).

— Recognizing a complex task in advance. Only three of our participants said that
they created task models prior to executing those tasks. In these cases, participants
recognized the benefit of creating a task model because the task was perceived as
complex (e.g., “creating a new teleconference account”). Some of our participants
characterized such tasks as “long and complicated” or “obnoxious” even though they
were preformed infrequently (e.g., “every few months” or “once a year”).

When questioned about their reasons for not creating task models to automate their
tasks, our participants revealed that they:

— Do not believe they have many repetitive tasks. Surprisingly, five of our eight partici-
pants stated that the main reason they did not create task models was because they
did not feel they performed many repetitive tasks.

— Feel the cost of creating task models is too high. As in previous research, our partic-
ipants also cited high overhead as a reason for not creating task models (five out of
eight). One of our participants commented that “only complicated tasks are worth
creating [models] for, not everyday tasks.” Another stated that “most of the time the
steps in my task are relatively straightforward” (e.g., “going to a site to read the
news” or “checking a bank statement”) and therefore not worth the effort of creating
a task model.

While these findings provide initial evidence that people have difficulty recognizing
tasks they can or should automate, further research is necessary to validate these
results with a larger and more diverse population. However, given that our interview
participants would be considered computer experts, it is conceivable that non-experts
might have more difficulty recognizing or creating task models. This suggests that
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Table I. Web Usage Log Statistics Collected for Our Repetition Analysis and Task
Model Generation Evaluations

PID Days | Actions | Domains | Sequences | Avg. Seq. Length
1 271 27,538 109 1,557 114
2 141 19,371 128 1,377 10.4
3 61 4,472 69 367 10.8
4 42 6,393 66 435 9.0
5 24 490 5 38 16.0
6 21 2,958 9 63 31.7
7 21 1,371 25 105 10.5
Total | 581 62,830 411 3,940 NA
Avg. 83 8,975.7 58.7 562.9 14.3
SD 93.1 | 10,444.1 48.3 638.1 8.0

relying on people to supply automation systems with manually created task models
could impede their everyday use of automation.

4. REPETITION ANALYSIS

Participants in our interview study did not believe they perform many repetitive tasks.
They also felt that only complex (and typically infrequent) tasks were worth automat-
ing. In contrast, we hypothesized that the benefit of task automation systems lies in
automating repetitive tasks, regardless of complexity or frequency.

4.1. Analysis

To test our hypothesis, we collected actual Web usage data from seven people in our
research lab (two female, five from our interview study) and analyzed the amount of
repetition exhibited per person. Web usage logs were obtained via CoScripter Reusable
History [Li et al. 2010] (CRH), a browser plug-in that records element-level Web ac-
tions. Our participants had installed CRH in at least one of the Web browsers they
used regularly for at least two and up to 13 months (amounting to a total of 581 days
worth of usage data). From this set, we obtained 62,830 Web actions from 411 unique
domains (e.g., “amazon.com,” “acm.org”). Table I shows the usage data we obtained per
participant.

Note that the prevalence of tabbed browsing complicates the problem of measuring
repetition as it allows people to concurrently progress through multiple tasks [Dubroy
and Balakrishnan 2010]. Therefore, to avoid the added complexity of distilling distinct
tasks from actions collected over multiple tabs, we restrict our analysis of repetition to
behaviors within a single Web domain.

Before we could measure repetition, we first had to preprocess (or transform) each
participant’s CRH data into a format suitable for pattern discovery. After preprocess-
ing, we cast the problem of estimating repetition as a problem of measuring overlap
within sequences. Measuring sequence overlap is a well-studied problem with impor-
tant applications in text processing, data compression and bioinformatics (e.g., DNA
sequencing) [Gusfield 1997].

Segmenting Logs into Action Sequences. To measure task repetition, we first had to
extract sequences of actions over which we could detect repetition (or overlap). To ob-
tain action sequences, we segmented each person’s log data by estimating task bound-
aries as follows. For each domain, we first segmented CRH logs per day (assuming
tasks did not span multiple days). Then we segmented logs within each day using a
time-based heuristic as follows. We computed the mean time between consecutive do-
main actions (excluding those spanning day boundaries), and then segmented the logs

ACM Transactions on Interactive Intelligent Systems, Vol. 3, No. 3, Article 14, Pub. date: October 2013.



14:8 S. Amershi et al.

when the time between consecutive actions exceeded one standard deviation of the
mean. Intuitively, this heuristic assumes that the time between consecutive actions
within a task is less than the time between actions across task boundaries. We remove
sequences of two actions or less from our resulting set of sequences as these likely do
not contain repetitious behavior and add noise. Table I shows the number of sequences
we obtained using these heuristics per participant and the average length of each se-
quence (averaged across domains). Note that the average length of a sequence is the
average number of actions in a sequence, which is 14.3 for our Web usage logs with a
standard deviation of 8.0.

Mapping Low-Level Actions to Action Classes. Because element-level actions contain
unstructured text, conceptually equivalent actions are often represented in a variety of
different ways (e.g., “Click the ‘login’ button” versus “Click the ‘Log-in’ button”). There-
fore, to treat equivalent actions the same during repetition discovery, we mapped indi-
vidual CRH actions into related action classes, which are classes of similar actions in
Web pages such that members of an action class perform similar functions (e.g., enter-
ing a password into a textbox in a login form). This concept is similar with our notion
of instruction-class for test scripts [Mahmud and Lau 2010]. We used a conservative
heuristic for mapping actions to classes which only maps highly similar strings to the
same class (and ensures that dissimilar strings such as “Enter username” and “Enter
password” are never mapped to the same class).

First, we interpreted each CRH log action as a Web page command as in [Lau et al.
2009; Li et al. 2010; Mahmud and Lau 2010]. Each command contains three parts:
the ActionType indicating the element-level action taken (e.g., click, enter, select), the
ObjectType representing the type of page element on which the action was taken (e.g.,
button, link, radiobutton, checkbox, textbox), and the ObjectLabel identifying the tar-
get element (e.g. caption of a button, link text, label of a textbox). The system in Li et al.
[2010] which generates CRH logs relies on heuristics to extract a human-readable la-
bel for the target of each action. For example, if an action is on a Web page element
that contains a caption or label field, then that becomes the ObjectLabel. If no such
caption or label field is present, then it uses heuristics, such as using the accessibility
text (for image elements) or nearby text (e.g., typically appear in the left side of a Web
page element in a Web form) to assign the ObjectLabel.

For example, the “Click the ‘login’ button” action would be interpreted as the
following command: <‘click’,’button’login’>. As another example, “Enter ‘12345678’
into the ‘Account Number’ textbox” would be interpreted as <‘enter’,textbox’’Account
Number’>. Note that for mapping an action to an action class, we do not consider the
ObjectValue, which is ‘12345678’ in this example. As yet another example, “click the
‘my account’ link” would be interpreted as <‘click’,link’, my account’>.

Next, we map commands to action classes sequentially as they were observed. That
is, an incoming command is mapped to an existing action class (possibly containing
multiple commands) if it met the following criteria:

— The ActionType and ObjectType of the incoming command is the same as that of
the action class. For example, the ActionType and ObjectType of the actions “Click
the ‘international’ link” and “Click the ‘US’ link” are similar. However, the following
two actions have a dissimilar ObjectType but similar ActionType: “Click the ‘inter-
national’ link” and “Click the ‘international’ tab.”

— The difference between the ObjectLabel of the incoming command and any command
in the class is less than some threshold, where the difference is measured as the Lev-
enshtein string edit distance between labels. Our experiments showed that an edit
distance threshold of three was sufficient for achieving our goal of conservatively
mapping similar actions together. For example, consider the following two actions:
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“Select ‘California’ from the ‘State Name’ listbox” and “Select ‘New York’ from the
‘State-name’ listbox”. Their ObjectLabel are “State Name” and “State-name”. We
compute the edit distance between these strings and consider them as equivalent
since the distance is less than three.

If no such class exists, we create a new action class for the incoming command. Let us
consider the following sequence of actions:

go to “http://www.cheaptickets.com”

enter “new york” into the first “To City name or airport” textbox
enter “08/10/10” into the first “Leave” textbox

enter “08/15/10” into the first “Return” textbox

enter “san jose” into the first “From City name or airport” textbox
enter “LGA” into the "To City name or airport” textbox

turn on the first “incl. nearby airports” checkbox

click the “Search Flights” button

The first action is mapped to action-class A: < go to, ,“cheaptickets”> (note that for
loading a Web page into a browser, the ObjectType field is empty and ObjectLabel is
the URL of the Web page). The next action is mapped to the action-class B: <enter,
textbox, “To City name or airport”>. The following three actions are mapped to ac-
tion classes C:<enter, textbox, “Leave”>, D:<enter, textbox, “Return”> and E:<enter,
textbox, “To City name or airport”>. The 6th action is mapped to the action-class B
and the 7th action is mapped to the action-class F:<turn on, checkbox, “incl. nearby
airports”>. The final action is mapped to the action-class G:<click, button, “Search
Flight”>. Thus the sequence becomes ABCDEBFG, when expressed as a sequence of
action-classes. Observe that the action-class B is repeated in this sequence. As another
example, consider the following sequence of actions:

go to “www.amazon.com”

enter “Garmin” into the “Search for” textbox

append “Garmin fr60” to the “Search for” textbox

click the “Go” button

click the “Garmin FR60 Men’s Red Fitness Watch (Includes Heart Rate Monitor and USB ANT
Stick)” link

select “R60 Men’s Black Fitness Watch Bundle (In...” from the “Select” listbox

select “R60 Men’s Red Fitness Watch (Includes He...” from the “Select” listbox

click the first “Add to Shopping Cart” button

click the first “Close” link

enter “garmin premium heart rate monitor” into the “Search for” textbox

click the first “Go” button

enter “garmin premium strap” into the “Search for” textbox

click the first “Go” button

click the “Garmin Premium heart rate monitor (soft strap)” link

click the first “Add to Shopping Cart” button

click the “Proceed to Checkout” link

enter your password into the “My Password is” textbox

click the “Continue” button

click the first “One-Day Shipping” button

click the first “Place Your Order” button

This sequence is mapped as the following sequence of action-classes: ABCDEF-
FGHBDBDIGJKLMN, where, A: <go to, , “amazon”>, B: <enter, textbox, “Search
for”>, C: <append, textbox, “Search for”>, D: <click, button, “Go”>, E: <click, link,
“Garmin FR60 Men’s Red Fitness Watch (Includes Heart Rate Monitor and USB ANT
Stick)”, F: <select, listbox, “R60 Men’s Black Fitness Watch Bundle (In...”>, G: <click,
button, “Add to Shopping Cart”>, H: <click, link, “Close”>, I. <click, link, “Garmin
Premium heart rate monitor (soft strap)”>, J: <click, link, “Proceed to Checkout”>, K:
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<enter, textbox, “My Password is”>, L: <click, button, “Continue”>, M: <click, button,
“One-Day Shipping”>, and N: <click, button, “Place Your Order”>.

Detecting Repetition. After segmenting each participant’s CRH logs and mapping
individual actions onto action classes, we are left with one set of action class sequences
per domain over which we can estimate repetition (i.e., measure sequence overlap).
However, because natural Web usage data is noisy and may contain spurious actions,
this requires detection of non-contiguous overlap (e.g., sequence ‘a-b-¢’ and ‘a-c-d’ share
the common, non-contiguous, subsequence ‘a-c’). Therefore, we use an accepted metric
for computing non-contiguous sequence overlap from string processing applications
known as longest common subsequence (LCS) [Bergroth et al. 2000].

The LCS metric computes the longest common subsequence between a pair of se-
quences (we normalize by the average length of the two sequences). For example, se-
quence ‘a-b-¢’ and ‘a-c-d’ has an LCS value of 2/3. We interpret this to mean that these
two sequences have ~67% overlap. Note that sequence order matters in LCS (e.g.,
while ‘a-b-¢’ and ‘c-b-a’ share the same actions, these sequences would only produce an
LCS value of 1/3).

Because we are interested in the amount of overlap in a set of sequences (i.e., per
domain), we measure the LCS between each pair of sequences and then compute the
average and maximum of these pair-wise computations to get a sense of the amount
of repetition in that domain. Intuitively, average pair-wise LCS conveys the overall
amount of repetition observed in a domain, whereas maximum pair-wise LCS relates
the magnitude of the most repetitive domain behavior.

We also estimated the number of actions that could be saved by automating detected
repetition. For each participant we calculated the actions saved, ¢, by

domains s:
tp = Z (é * lcs,avgi> ,
1
where lcs_avg; is the average pair-wise LCS value computed for domain i, s; represents
the number of action sequences in domain i and S represents the total number of

sequences computed for participant p. Intuitively, this means that the more we interact
within a domain and the more repetition observed, the more actions we could save.

4.2. Results

Figure 1(a) illustrates the amount of repetition detected in our participant’s CRH logs
as relative frequency histograms of LCS-based repetition (in percentages). For exam-
ple, the second green bar in the histogram means that on average, 23% of domains
visited by a person show between 10 and 20% overlap or repetition (according to our
average pair-wise LCS method).

According to LCS, we see that people do indeed show evidence of repetition in their
Web actions and the amount of repetition varies across different domains. In some do-
mains, people show a very high amount of repetition. For example, in 4.9% of people’s
domains, 70% or more of their behaviors within that domain are repetitious accord-
ing to our average pair-wise LCS metric (20.8% of domains according to max pair-wise
LCS). Examples of domains with highly repetitious behaviors include a financial ser-
vices Web site that is only accessed to pay off the same monthly bill and the Web site
for a favorite takeout restaurant where the same food is almost always ordered.

Our results also show that in 32.5% of domains, people show at least 20% and up
to 50% repetition according to average LCS (19.3% of domains according to max LCS).
An example domain with moderate repetition is a person’s main airline Web site
that is sometimes accessed for booking regular flights home and sometimes accessed
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Fig. 1. (a) Relative frequency histograms of LCS-based repetition and (b) percentage of actions saved by
automation per participant.

to check the status of trips. An example of a domain with low repetition (less than
10%) is the ACM Web site, which is accessed for a wide variety of reasons including
searching for different papers, managing distribution lists and reading the news.
However, even these Web sites show some repetition, such as periodically renewing
an ACM membership.

Figure 1(b) shows the percentage of actions that our participants could have saved
by fully automating their repetitive behaviors (i.e., automating behaviors in an ideal-
istic scenario not requiring user interaction or guidance). This shows that all of our
participants could have reduced their overall number of Web actions by at least 7.3%
and up to 19.8%. According to our analysis, the average actions that could be saved per
person by full automation is 14.3% (4.7% SD).

4.3. Discussion

To our knowledge, this is the first element-level analysis of Web behavior patterns.
Our results indicate that people do repeat behaviors on the Web and the amount of
repetition varies across domains, including some domains that consistently show only
the same behaviors. Moreover, we show that fully automating these behaviors could
save an average of 14.3% of people’s actions and up to almost 20% for some. It should
be noted however that full automation is difficult to achieve without some user in-
volvement (e.g., via actions to initiate the automation or verification of the automated
steps). Therefore, the number of actions saved in practice will be a function of the
automation system used. However, it is fair to say that reducing the amount of work
required to complete mundane tasks by automating those tasks could provide people
time for more interesting endeavors.

While our findings suggest the benefit of automation, a detailed analysis of the de-
tected patterns is necessary. For example, some of the repetition we detected included
repeatedly clicking the “next” or “go back” links in a Web page (e.g., when viewing pic-
tures in Facebook or Flickr or when wanting to return back to a search results page).
This could suggest the need for automation (e.g., when successively viewing images)
or for structural improvement of a site. Or it could simply be noise that should not
be automated. One possible way of confirming our repetition findings is a supervised
analysis, where a person inspects their own data to determine when automation is
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necessary. However, as our interviews revealed, people find it difficult to identify be-
haviors to automate.

Our analysis also makes some simplifying assumptions (e.g., including that tasks do
not span multiple days or domains), and uses heuristics that could be improved (e.g.,
segmenting sequences by the time between actions or mapping actions to action classes
using string-based metrics). However, we believe a more interesting improvement to
our analysis is in designing a metric better suited for measuring task repetition in sets
of sequences (as opposed to measuring repetition between pairs of sequences).

5. AUTOMATIC TASK MODEL GENERATION

Our interviews found that users of the CoScripter Web task automation system had
difficulty identifying tasks to automate and believed they did not perform many repet-
itive tasks. However, our analysis of Web repetition showed that people do in fact re-
peat their actions and automating these would reduce the overall number of actions
required to complete a task. Motivated by these findings, we developed LiveAction, a
fully-automated machine learning-based approach to task model generation.

5.1. LiveAction

Figure 2 illustrates the steps of our LiveAction approach to building task models.
Given CRH logs from a domain, we first preprocess the logs by segmenting them
into action sequences and then mapping actions to action classes as described in our
Repetition Analysis section. We also store the mapping from actions to action classes
along with frequency counts of individual actions for online mapping and prediction.
Segmenting and mapping are independent of each other and can be done in parallel.
Next, we cluster similar action class sequences together and then build a finite state
automaton out of each cluster.

Clustering Sequences of Action Classes. To create models of repetitious behavior, we
first have to identify behaviors that are similar. For this, we adapt our method of mea-
suring repetition in sequences in order to actually group similar sequences together.
Specifically, we employ unsupervised clustering to group similar action class sequences
together using a similarity metric based on LCS.

Our clustering algorithm takes a set of sequences as input and constructs a sepa-
rate cluster for each of them initially. Then it iteratively computes similarity between
pairs of clusters, merges the most similar together, eliminates low quality clusters and
then returns the set of clusters with the highest quality [Strehl 2002]. Since clusters
may contain more than one sequence, cluster similarity is defined as the average sim-
ilarity between the two corresponding sets of sequences, where sequence similarity
is measured using normalized LCS as in our repetition analysis. After clustering, we
eliminate noisy clusters which contain either a single sequence or sequences with low
intra-cluster similarity [Strehl 2002] using a similarity threshold of 0.1, determined
empirically.

Building Finite State Automata. After clustering similar action sequences together,
we construct an automaton for each cluster using a state-of-the-art automata construc-
tion method [Hopcroft et al. 2006] and a number of generalization heuristics specific to
our needs. Automaton construction begins with a cluster of action class sequences and
initially builds an automaton containing a linear path for each input sequence (a path
represents a sequence of states and each state corresponds to one action class from the
sequence). To generalize this automaton, we merge states using three heuristics:

— Two states are merged if they are adjacent and contain the same action class. This is
motivated by the assumption that if a user repeats an action once, they may repeat
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Fig. 2. LiveAction automatically generates task models given Web usage logs (1). First, we preprocess logs
by segmenting them into action sequences over which we can detect repetition (2) and mapping low-level ac-
tions to conceptually equivalent action classes (2). Next we cluster action class sequences together based on
their similarity (3) and then build a finite state automaton for each cluster using a state-of-the-art automata
learning algorithm (4). LiveAction task models are intended for use by task automation systems that rely
on task repositories to operate.

it again. After this merge, a self-loop is created on the merged state. For example,
the self-loop on state A (“Enter search term”) in Figure 2 was created as a result of
state merging using this heuristic.

— Two states are merged if they contain the same action class and transitions from
them result in the same set of states. For example, transitions from state F and J in
Figure 2 result in the same state G (however, they are not merged in this case since
their action classes are different). This heuristic captures the behavior of performing
the same action after related actions. For example, in an e-commerce Web site, a
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user may add an item to a shopping cart after either searching for an item and
then selecting a result from the search results list or choosing an item category and
then selecting an item from the item list. Hence, states in the automaton which
represent selecting an item followed by adding that item to a shopping cart should
be equivalent.

— Two states are merged if they have the same action class and transitions are made
to them from same set of states. This heuristic merges similar branches in an au-
tomaton. For example, imagine a user is shopping for laptops on an electronics Web
site. First, they select a link specifying a particular laptop brand (e.g., “dell”) and
then refine their search by selecting a link specifying a price range of “$400-$500.”
Later on in their search, they go back and again select the “dell” laptop brand link,
but this time they specify a price range of “$500—-600” by selecting the corresponding
link. In this case, the states corresponding to ‘selecting the $400—$500 link’ and ‘se-
lecting the $500-$600 link’ are merged because they have the same action class and
transitions to them are made from the same state (e.g., ‘selecting the dell link’). For
another example, the only transitions to states B and J in Figure 2 are made from
state A (however, B and J are not merged since their action classes are different).

6. EVALUATION

In this section we discuss our method and results of evaluating how well our automat-
ically generated task models capture repetition in Web usage data.

6.1. Method

We conducted two experiments: a standard leave-one-out-cross-validation (LOOCV)
evaluation measuring performance given a corpus of accumulated usage data and
an incremental evaluation monitoring how our models improve with more data. To
measure quality in capturing repetition, we tested the performance of our models
in predicting the next action in a sequence given previous actions observed up to
that point. Accuracy in predicting next steps impacts the capacity of our models to
automate repetitious behavior.

Prediction. Next action prediction requires identifying the correct model out of
possibly multiple models and then estimating the most likely next step given previous
actions. First, each action in the sequence of actions seen up to and including the
current action is mapped to an action class based on the previously computed mapping
from action to action class for the given domain. Then the sequence of action classes
is matched against the automata built for that domain out of previously observed
sequences.

Matching a sequence, s, against a set of automata is carried out as follows. Given
an automaton, A, with states {S1, So,...S,}, we compute a match score for each state,
m(s, A, S;), by trying to accept all possible subsequences of the sequence starting from
that state. Traditionally, automaton acceptance starts from a designated start state
and checks for a path from that state that exactly matches a given sequence [Hopcroft
et al. 2006]. We relax this requirement to accommodate our need to handle noisy se-
quences originating from actual Web usage logs. In our modified automaton acceptance
test, we check all possible subsequences of the input sequence for a match from a state.
For example, the sequence A—~B—N—D will be accepted by the first automaton in
Figure 2 since there is a path for the subsequence A—B—D from state A. Here N cor-
responds to selecting the 5th item from the search results, an action not used to build
the automaton. The longest matching subsequence of s starting from S; is considered
the best match for S; and m(s, A, S;) is then computed as the ratio of the length of this
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subsequence to the length of the s. In our example, the subsequence A—B—D is the
longest matching subsequence and therefore the match score of the input sequence is
3/4 or 0.75 starting from state A.

Using this method, we compute a match score for all states of an automaton. The
state with the highest match score is identified as the starting state for the input se-
quence, and the match score of the automaton, m(s, A), is the score computed for the
starting state. Continuing with the same example, state A is deemed as the starting
state for the input sequence A—~B—N—D and the match score of the automaton for
that sequence becomes 0.75. An automaton is deemed as a matching automaton for s
if the score computed for the automaton is above some acceptance threshold, chosen
empirically as 0.6. The matching automaton with the highest match score is then re-
turned as the correct model. For the first automaton, the match score (0.75) is above
the threshold and hence it is returned as the correct model for the input sequence.

After matching a sequence to an automaton, a next action prediction is made as fol-
lows. First, the current state of the automaton is determined as the state reached after
accepting the best matched subsequence of a sequence from the starting state. Using
the same example, the state reached after accepting the best matched subsequence
is state D (“Add to cart (button)”). Then the state with the most frequent transitions
from the current state is taken as the most likely next state. Finally, we map the action
class of the predicted state back to an action by selecting the most frequently occurring
action in that class. For our example, state E (“View Cart”) is the most likely state and
hence the action click the “view cart” link is predicted.

Performance. To measure performance, we performed the following tests given a
stream of Web usage data. For each action in the stream, we attempt to make a predic-
tion for that action based on previous actions seen up to that point. If we can make a
prediction, we record whether or not the prediction was correct (prediction accuracy).
We also record whether or not the actual next action existed within the identified
model but perhaps was not the step with the highest prediction value (existence accu-
racy). This simulates the potential for asking a person to choose the next best step out
of a set of possibilities.

Note that our models cannot always make a prediction. For example, if our models
have never seen similar previous actions (i.e., previous actions cannot be mapped to
existing action classes), then no prediction is possible as the previous actions are not
contained in any model. Similarly, if no models exist for a domain or no model matches
previous actions above the acceptance threshold, then no prediction can be made. For
this reason, we compute performance of our models in terms of both precision and re-
call. Precision in this context measures how accurate our predictions are when we can
make them, whereas recall measures the number of actions that our models are able to
accurately predict. Recall therefore considers no prediction for an action as incorrect.
Intuitively, high precision implies that when our models are used to automate behav-
iors, the behaviors will likely be correct, whereas high recall means that our models
will be able to automate most of our behaviors. Therefore, for each of our evaluations,
we report on four measures: prediction recall, existence recall, prediction precision and
existence precision.

Leave-One-Out-Cross-Validation (LOOCV). LOOCYV is a standard method of evalu-
ating performance of statistical machine learning algorithms. Given a set of preseg-
mented sequences of actions for a domain, LOOCV entails holding one sequence out
at a time, building models out of the rest of the data and then testing the prediction
performance of those models on the held out sequence. We measure prediction perfor-
mance on the held out sequence by predicting each step of the sequence.
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Fig. 3. A LiveAction model generated for checking application status in an immigration Web site. This
model has 21 nodes and 32 edges.

Incremental Evaluation. To better examine how our automatically generated task
models improve with increasingly more data, we also did the following experiment.
Given a stream of usage data for a domain (i.e., a raw, unsegmented sequence of ac-
tions), we made a prediction for each incoming action and then rebuilt our models from
scratch given previous actions plus the incoming action. Rebuilding involves updating
the mapping from actions to action classes, recomputing sequence boundaries, reclus-
tering of action class sequences and reconstructing automata. This scheme is inappro-
priate for online learning, but is sufficient for our purposes of evaluating performance
and assumes offline updating (perhaps nightly or after acquiring some amount of new
data). We leave defining an online updating scheme to reduce overhead as future work.

For both our LOOCV and incremental experiments we use the same CRH Web us-
age data collected for our repetition analysis as input and again restrict our evaluation
to within a domain. We also restrict our experiments to the domains in which people
exhibited the most repetition as measured by our repetition analysis. Specifically, for
each person we ran our experiments on the top 10% of their most repetitive domains
according to average pair-wise LCS. This amounts to 43 domains tested with an aver-
age estimated repetition (i.e., LCS value) of 63.1% (SD=16.1%). Our results therefore
demonstrate the effectiveness of our LiveAction models in automating a person’s most
repetitive behaviors.

6.2. Results

Our automatically generated LiveAction models captured repetitive action sequences
in our test data containing both cycles and branches. These models offer multiple ex-
ecution paths ranging from short to long, with an average observed path length of
6.43 steps (SD = 6.45) according to the clustered action class sequences used to build
models, after noisy clusters are removed. The maximum and minimum observed path
lengths were 32 and 2 steps, respectively. The types of repetitive tasks detected in-
cluded: checking train schedules, tracking UPS packages, recording daily exercises,
checking application status (e.g., immigration), ordering drinks from a store, ordering
food from a restaurant, checking mortgage balances, checking flight status, booking
flights, checking traffic, buying a phone card and paying phone bills. Figures 3, 4, and
5 show examples of generated LiveAction model.

We present the performance results of our LOOCV and incremental evaluations
cumulatively over actions. That is, for each prediction, we add up the number of
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Fig. 4. A LiveAction model generated for buying a calling card from a Web site. This model has 16 nodes
and 17 edges.
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Fig.5. A LiveAction model generated for ordering food from a restaurant Web site. This model has 13 nodes
and 15 edges.

correct predictions up to and including the current prediction and divide this by the
total number of predictions made so far. Figure 6 summarizes our results in terms of
average and final cumulative accuracy.

Interestingly, LOOCYV shows lower average and final precision compared to our in-
cremental evaluation results. Furthermore, the discrepancy between average and final
cumulative precision in LOOCYV is larger compared to the incremental evaluation. To
understand this difference, we inspected the prediction precision trends of individ-
ual domains. Figure 7 details the prediction precision performance on a select few
domains according to our incremental evaluation (selected to demonstrate the range
of observed results). Figure 8 then details the performance on each sequence tested
during our LOOCYV evaluation in one of the domains shown in Figure 7 (the letsget
domain, a Web site for ordering restaurant food online). Notice that according to our
incremental evaluation, our models are able to predict much of the repetition in the
letsget domain (showing a final accuracy of 90.6%). However, performance on the 23
individual sequences in that domain varies. Examining the sequences, we see that our
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Fig. 7. Prediction precision performance trends for select domains tested during our incremental evaluation
(selected to demonstrate the range of observed trends).

LiveAction models are able to predict 17 sequences with near perfect precision (see
the multiple trend lines along the top of Figure 8). These sequences correspond to a
person ordering the exact same meal online 17 times. The two trend lines with zero
accuracy correspond to two behaviors not seen in any of the sequences used to build
the models during our LOOCV evaluation: navigating the online menu and logging in
(presumably the participant was logged in by default during their previous orders).
The remaining four trend lines were predicted partially correctly and correspond to
behaviors similar to the 17 behaviors that were exactly the same, but had a few devia-
tions (e.g., adding one element to their normal order). This variation in performance on
individual sequences accounts for the lower overall precision shown by LOOCYV, even
though our models are able to accurately predict most behaviors in the letsget domain.
This justifies our incremental evaluation method for demonstrating the performance
of our LiveAction models.

Focusing on our incremental evaluation, we see that our LiveAction models can pre-
dict actions with an average and final precision of 76.6% and 78.5%, respectively. If our
models are used to present a person with a choice of possible next actions, our average
and final (existence) precision improves to 79.6% and 84.2%, respectively.

Not surprisingly, recall performance of our models is relatively poor compared to
precision. This is expected because we consider null predictions as incorrect according
to recall. However, this penalizes our models even when no prediction is possible (e.g.,
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Fig. 8. Prediction precision performance according to LOOCV on individual sequences from the letsget
domain tested.

no information exists or the current sequence of actions has never been seen before).
Therefore, we recomputed accuracy after adjusting for null predictions and found that
our average and final prediction recall improved to 62.4% and 63.4%, respectively.

6.3. Discussion and Future Work

There are many ways of accomplishing each step in our LiveAction approach to auto-
matically generating task models (e.g., there are alternative heuristics for segmenting
action sequences and mapping actions to action classes). While we empirically evalu-
ated several of these alternatives and selected those that performed best, our choices,
and corresponding evaluation results, demonstrate a proof-of-concept that could be
improved upon. For example, our method of mapping actions to action classes via
edit distance comparisons (less than three edits) will incorrectly map actions such as
“Click the ‘Inbox (26)’ link” and “Click the ‘Inbox (354) link” to separate action classes
although they should be equivalent. An improved mapping scheme could further in-
crease performance of our LiveAction models. In this work we have used time-based
heuristics for segmenting CRH actions into sequences, mapping actions to action-
classes and then clustering sequences of action-classes. In the future, we would like
to explore whether we can use other log analysis methods as described in [Hilbert and
Redmiles 2000; Ivory and Hearst 2001].

Our evaluation results show that our current method of building LiveAction mod-
els is able to capture a variety of repetitive Web behaviors, varying in terms of the
nature and complexity of the tasks. Note that understanding the types of tasks that
our models were unable to capture is more difficult without labeled data about all of
the tasks being performed (recall that labeled data is difficult to obtain because people
have trouble identifying their repetitive tasks). Therefore, an analysis of failures is
best answered in a deployed system and is left for future work.

In this research, we limit our task model representation to finite state automaton. In
a dynamic Web application, where elements may be dynamically created and destroyed
within a single page, an automaton representation may face further challenges. This
is because dynamic changes to Web page elements result in changes to the action-
class representation, which can make some old states (based on action-classes) of the
automaton inaccessible. We have not investigated updating a learned finite state au-
tomaton in such cases, and leave this as a future work. However, we believe that such
state changes would be minimal since most Web page elements are quite static (e.g.,
form elements such as labels of a button or a textbox).
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In this article, we have not investigated scenarios when a sequence of actions can
be matched with multiple learned automata. Our algorithm for matching a sequence
to a set of automata does not capture the situation when the best matching may be
obtained for multiple automata. In the simplest case, a random selection of such best
matched multiple automata can be done. However, we leave this as a future work to
deeply investigate such scenarios and design solutions to handle them.

Our LiveAction models are only able to make predictions if they have observed simi-
lar behaviors in the past. When predictions are possible, our models can recall 63.4% of
next steps with 78.5% precision. Precision performance demonstrates the capacity of
our models to automate repetitious behaviors on the Web (as only predicted actions can
be automated). One conceivable application that could benefit from the ability of our
LiveAction models to make one-step-ahead predictions is a Web task autocompletion
system. For example, when a person navigates to a new domain, previously generated
LiveAction models for that domain could be loaded for action prediction. Then, as a
person interacts with a Web page, their sequences of actions could be passed to the
autocompletion system for predicting next actions. If an action is predicted (i.e., the
previous sequence of actions matches an existing model and next state predictions are
computed), it could be presented to the person (e.g., via subtle interface highlighting to
minimize distraction [Cypher 1991] or in pseudo-natural language in a browser side-
bar as in [Leshed et al. 2008]). Note that, our automaton based models are nondeter-
ministic, hence it is possible to reach multiple next states from a specific state. In such
cases, the autocompletion system can highlight multiple next actions corresponding to
multiple states.

When next actions are predicted and presented, the person could choose to auto-
matically execute a predicted action (e.g., via a keyboard shortcut as with text field
autocompletion). As a person continues to interact with pages in the domain (either
on their own or by executing actions suggested by the system), their observed action
sequence could be updated and new predictions could be computed and displayed. A
future Web task autocompletion system such as this could also permit evaluation of
our models with real users.

When considering existence of intended actions within our models, precision im-
proves to 84.2%. This suggests that human guidance (via selection from multiple pre-
dictions in this case) could complement model predictions and improve automation
accuracy. Alternatively, interactive human feedback could be used for manual model
refinement and full task automation. For example, an intelligent task assistant could
present a person with a sequence of LiveAction predicted steps necessary to carry out
a task on their behalf. Those actions could then be manually edited by deleting ir-
relevant actions, typing or demonstrating necessary actions as in Li et al. [2010], or
reordering the sequence. Manually editing and correcting a model could enable the as-
sistant to fully automate the task in the future. A full exploration of LiveAction model
refinement via interactive human feedback warrants further investigation and is left
for future work.

7. CONCLUSION

In this research, we analyze element-level Web usage data, show that people do repeat
behaviors on the Web, and show that automating these behaviors could reduce the
amount of work needed to complete Web-based tasks. We then present LiveAction, a
fully-automated machine learning-based approach to modeling repetitive behaviors on
the Web. Our evaluations show that our LiveAction models can be used to automate
repetitious tasks on the Web and have the potential to automatically populate the task
model repositories required by many task automation systems existing today.
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